Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
1.
J Med Chem ; 67(4): 2584-2601, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38305199

ABSTRACT

A series of 28 compounds, 3-nitro-1H-1,2,4-triazole, were synthesized by click-chemistry with diverse substitution patterns using medicinal chemistry approaches, such as bioisosterism, Craig-plot, and the Topliss set with excellent yields. Overall, the analogs demonstrated relevant in vitro antitrypanosomatid activity. Analog 15g (R1 = 4-OCF3-Ph, IC50 = 0.09 µM, SI = >555.5) exhibited an outstanding antichagasic activity (Trypanosoma cruzi, Tulahuen LacZ strain) 68-fold more active than benznidazole (BZN, IC50 = 6.15 µM, SI = >8.13) with relevant selectivity index, and suitable LipE = 5.31. 15g was considered an appropriate substrate for the type I nitro reductases (TcNTR I), contributing to a likely potential mechanism of action for antichagasic activity. Finally, 15g showed nonmutagenic potential against Salmonella typhimurium strains (TA98, TA100, and TA102). Therefore, 3-nitro-1H-1,2,4-triazole 15g is a promising antitrypanosomatid candidate for in vivo studies.


Subject(s)
Chagas Disease , Leishmaniasis , Trypanocidal Agents , Trypanosoma cruzi , Humans , Structure-Activity Relationship , Chagas Disease/drug therapy , Triazoles/chemistry
2.
Int J Biol Macromol ; 259(Pt 2): 129192, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38216013

ABSTRACT

Old Yellow Enzymes (OYEs) are flavin-dependent redox enzymes that promote the asymmetric reduction of activated alkenes. Due to the high importance of flavoenzymes in the metabolism of organisms, the interaction between OYEs from the parasites Trypanosoma cruzi and Leishmania braziliensis and three diterpene icetexanes (brussonol and two analogs), were evaluated in the present study, and differences in the binding mechanism and inhibition capacity of these molecules were examined. Although the aforementioned compounds showed poor and negligible activities against T. cruzi and L. braziliensis cells, respectively, the experiments with the purified enzymes indicated that the interaction occurs by divergent mechanisms. Overall, the ligands' inhibitory effect depends on their accessibility to the N5 position of the flavin's isoalloxazine ring. The results also indicated that the OYEs found in both parasites share structural similarities and showed affinities for the diterpene icetexanes in the same range. Nevertheless, the interaction between OYEs and ligands is directed by enthalpy and/or entropy in distinct ways. In conclusion, the binding site of both OYEs exhibits remarkable plasticity, and a large range of different molecules, including that can be substrates and inhibitors, can bind this site. This plasticity should be considered in drug design using OYE as a target.


Subject(s)
Chagas Disease , Leishmania braziliensis , Trypanosoma cruzi , Humans , NADPH Dehydrogenase/chemistry , NADPH Dehydrogenase/pharmacology , Chagas Disease/parasitology , Flavins/pharmacology
3.
Eur J Med Chem ; 260: 115451, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37573209

ABSTRACT

Chagas disease and leishmaniasis are neglected diseases of high priority as a public health problem. Pharmacotherapy is based on the administration of a few drugs, which exhibit hazardous adverse effects and toxicity to the patients. Thus, the search for new antitrypanosomatid drugs is imperative to overcome the limitations of the treatments. In this work, 46 2-nitroimidazole 3,5-disubstituted isoxazole compounds were synthesized in good yields by [3 + 2] cycloaddition reaction between terminal acetylene (propargyl-2-nitroimidazole) and chloro-oximes. The compounds were non-toxic to LLC-MK2 cells. Compounds 30, 35, and 44 showed in vitro antichagasic activity, 15-fold, 12-fold, and 10-fold, respectively, more active than benznidazole (BZN). Compounds 30, 35, 44, 45, 53, and 61 acted as substrates for the TcNTR enzyme, indicating that this might be one of the mechanisms of action involved in their antiparasitic activity. Piperazine series and 4-monosubstituted compounds were potent against T. cruzi parasites. Besides the in vitro activity observed in compound 45, the in vivo assay showed that the compound only reduced the parasitemia levels by the seventh-day post-infection (77%, p > 0.001) compared to the control group. However, 45 significantly reduced the parasite load in cardiac tissue (p < 0.01) 11 days post-infection. Compounds 49, 52, and 54 showed antileishmanial activity against intracellular amastigotes of Leishmania (L.) amazonensis at the same range as amphotericin B. These findings highlight the antitrypanosomatid properties of 2-nitroimidazole 3,5-disubstituted isoxazole compounds and the possibility in using them as antitrypanosomatid agents in further studies.


Subject(s)
Antiprotozoal Agents , Chagas Disease , Nitroimidazoles , Trypanosoma cruzi , Humans , Antiprotozoal Agents/chemistry , Chagas Disease/drug therapy , Isoxazoles/chemistry , Nitroimidazoles/pharmacology , Nitroimidazoles/therapeutic use , Structure-Activity Relationship , Cycloaddition Reaction
4.
Pharmaceuticals (Basel) ; 16(3)2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36986527

ABSTRACT

Trypanosoma cruzi, the etiological agent of Chagas disease, relies on finely coordinated epigenetic regulation during the transition between hosts. Herein we targeted the silent information regulator 2 (Sir2) enzyme, a NAD+-dependent class III histone deacetylase, to interfere with the parasites' cell cycle. A combination of molecular modelling with on-target experimental validation was used to discover new inhibitors from commercially available compound libraries. We selected six inhibitors from the virtual screening, which were validated on the recombinant Sir2 enzyme. The most potent inhibitor (CDMS-01, IC50 = 40 µM) was chosen as a potential lead compound.

5.
Nat Prod Res ; 37(24): 4210-4220, 2023.
Article in English | MEDLINE | ID: mdl-36799539

ABSTRACT

p-Coumaric acid is derived from cinnamic acid and is one of the major compounds in the Brazilian green propolis extract. Studies have shown that both p-coumaric acid and cinnamic acid have promising antiproliferative effects. In this context, aiming to increase the complexity of these active natural products and their activities, we performed coupling reactions with propargylamine and benzylamine, as well as with threonine, phenylalanine and lysine amino acids, aiming to enhance their antiproliferative effects towards the hormone-dependent breast cancer MCF-7 cells. Overall, the p-coumaric acid coupling with L-threonine amino acid (compound 15) had the best selectivity index (SI = 5.1), with half-maximal inhibitory concentration of 39.6 ± 1 µM, showing a high selectivity against hormone-dependent breast cancer cell lines MCF-7 and low cytotoxicity against the normal breast cell lines MCF-10A. Thus, this new natural product derivative may represent a prototype for the future development of antiproliferative agents, especially against hormone-dependent breast cancer.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Humans , Female , Coumaric Acids/pharmacology , MCF-7 Cells , Antineoplastic Agents/chemistry , Breast Neoplasms/drug therapy , Hormones/pharmacology , Hormones/therapeutic use , Cell Proliferation , Cell Line, Tumor
6.
J Biomol Struct Dyn ; 41(23): 13844-13856, 2023.
Article in English | MEDLINE | ID: mdl-36826433

ABSTRACT

Chagas disease is a well-known Neglected Tropical Disease, mostly endemic in continental Latin America, but that has spread to North America and Europe. Unfortunately, current treatments against such disease are ineffective and produce known and undesirable side effects. To find novel effective drug candidates to treat Chagas disease, we uniquely explore the Trypanosoma cruzi proteasome as a recent biological target and, also, apply drug repurposing through different computational methodologies. For this, we initially applied protein homology modeling to build a robust model of proteasome ß4/ß5 subunits, since there is no crystallographic structure of this target. Then, we used it on a drug repurposing via a virtual screening campaign starting with more than 8,000 drugs and including the methodologies: ligand-based similarity, toxicity predictions, and molecular docking. Three drugs were selected concerning their favorable interactions at the protein binding site and subsequently submitted to molecular dynamics simulations, which allowed us to elucidate their behavior and compare such theoretical results with experimental ones, obtained in biological assays also described in this paper.Communicated by Ramaswamy H. Sarma.


Subject(s)
Chagas Disease , Trypanosoma cruzi , Humans , Molecular Dynamics Simulation , Proteasome Endopeptidase Complex/metabolism , Proteasome Endopeptidase Complex/pharmacology , Proteasome Endopeptidase Complex/therapeutic use , Molecular Docking Simulation , Ligands , Chagas Disease/drug therapy
7.
Arch Pharm (Weinheim) ; 356(4): e2200472, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36534890

ABSTRACT

Chagas disease (CD) is a neglected disease caused by the protozoan Trypanosoma cruzi. The two drugs used in the treatment schedules exhibit adverse effects and severe toxicity. Thus, searching for new antitrypanosomal agents is urgent to provide improved treatments to those affected by this disease. 5-Nitrofuran-isoxazole analogs were synthesized by cycloaddition reactions [3+2] between chloro-oximes and acetylenes in satisfactory yields. We analyzed the structure-activity relationship of the analogs based on Hammett's and Hansch's parameters. The 5-nitrofuran-isoxazole analogs exhibited relevant in vitro antitrypanosomal activity against the amastigote forms of T. cruzi. Analog 7s was the trending hit of the series, showing an IC50 value of 40 nM and a selectivity index of 132.50. A possible explanation for this result may be the presence of an electrophile near the isoxazole core. Moreover, the most active analogs proved to act as an in vitro substrate of type I nitroreductase rather than the cruzain, enzymes commonly investigated in molecular target studies of CD drug discovery. These findings suggest that 5-nitrofuran-isoxazole analogs are promising in the studies of agents for CD treatment.


Subject(s)
Nitrofurans , Trypanocidal Agents , Trypanosoma cruzi , Structure-Activity Relationship , Isoxazoles/pharmacology , Isoxazoles/chemistry , Drug Repositioning , Nitrofurans/pharmacology , Nitrofurans/chemistry , Trypanocidal Agents/pharmacology , Trypanocidal Agents/chemistry
8.
J Inorg Biochem ; 237: 111993, 2022 12.
Article in English | MEDLINE | ID: mdl-36108344

ABSTRACT

This work describes the synthesis, characterization and in vitro anticancer activity of two platinum(II) complexes of the type [Pt(L1)2(1,10-phen)] 1 and [Pt(L2)2(1,10-phen)] 2, where L1 = 5-heptyl-1,3,4-oxadiazole-2-(3H)-thione, L2 = 5-nonyl-1,3,4-oxadiazole-2-(3H)-thione and 1,10-phen = 1,10-phenanthroline. As to the structure of these complexes, the X-ray structural analysis of 1 indicates that the geometry around the platinum(II) ion is distorted square-planar, where two 5-alkyl-1,3,4-oxadiazol-2-thione derivatives coordinate a platinum(II) ion through the sulfur atom. A chelating bidentate phenanthroline molecule completes the coordination sphere. We tested these complexes in two breast cancer cell lines, namely, MCF-7 (a hormone responsive cancer cell) and MDA-MB-231 (triple negative breast cancer cell). In both cells, the most lipophilic platinum compound, complex 2, was more active than cisplatin, one of the most widely used anticancer drugs nowadays. DNA binding studies indicated that such complexes are able to bind to ct-DNA with Kb values of 104 M-1. According to data from dichroism circular and fluorescence spectroscopy, these complexes appear to bind to the DNA in a non-intercalative, probably via minor groove. Molecular docking followed by semiempirical simulations indicated that these complexes showed favorable interactions with the minor groove of the double helix of ct-DNA in an A-T rich region. Thereafter, flow cytometry analysis showed that complex 2 induced apoptosis and necrosis in MCF-7 cells.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Humans , Phenanthrolines/pharmacology , Phenanthrolines/chemistry , Platinum/chemistry , Thiones , Molecular Docking Simulation , Antineoplastic Agents/chemistry , DNA/chemistry , Coordination Complexes/chemistry , Cell Line, Tumor
9.
Bioorg Med Chem ; 47: 116372, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34454129

ABSTRACT

Breast cancer has the highest incidence and mortality in females, while prostate cancer has the second-highest incidence in males. Studies have shown that compounds from Brazilian green propolis have antitumor activities and can selectively inhibit the AKR1C3 enzyme, overexpressed in hormone-dependent prostate and breast tumors. Thus, in an attempt to develop new cytotoxic inhibitors against these cancers, three prenylated compounds, artepillin C, drupanin and baccharin, were isolated from green propolis to synthesize new derivatives via coupling reactions with different amino acids. All obtained derivatives were submitted to antiproliferative assays against four cancer cells (MCF-7, MDA MB-231, PC-3, and DU145) and two normal cell lines (MCF-10A and PNT-2) to evaluate their cytotoxicity. In general, the best activity was observed for compound6e, derived from drupanin, which exhibited half-maximal inhibitory concentration (IC50) of 9.6 ± 3 µM and selectivity index (SI) of 5.5 against MCF-7 cells.In silicostudies demonstrated that these derivatives present coherent docking interactions and binding modes against AKR1C3, which might represent a possible mechanism of inhibition in MCF-7 cells.


Subject(s)
Amino Acids/pharmacology , Antineoplastic Agents, Phytogenic/pharmacology , Cinnamates/pharmacology , Phenylpropionates/pharmacology , Propolis/chemistry , Trichothecenes/pharmacology , Amino Acids/analysis , Amino Acids/chemical synthesis , Antineoplastic Agents, Phytogenic/analysis , Antineoplastic Agents, Phytogenic/chemical synthesis , Cell Line, Tumor , Cell Proliferation/drug effects , Cinnamates/analysis , Cinnamates/chemical synthesis , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Phenylpropionates/analysis , Phenylpropionates/chemical synthesis , Propolis/analysis , Propolis/chemical synthesis , Propolis/pharmacology , Structure-Activity Relationship , Trichothecenes/analysis , Trichothecenes/chemical synthesis
10.
Eur J Pharm Sci ; 162: 105834, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-33826936

ABSTRACT

Gold(III) complexes have been studied for the past years due to their anticancer properties and great affinity to biotargets, such as enzymes and proteins, which support their pharmacological applications. Within this scope, in this work the antiproliferative activities of two Au(III)-thiosemicarbazonate complexes, [AuClL1] (1, L1: (E,Z)-N-ethyl-N'-(3-nitroso-kN)butan-2-ylidene)carbamohydrazonothioato-k2N2,S) and [Au(Hdamp)L2]Cl (2, L2: N-(N'',N''-diethylaminothiocarbonyl)-N'(N''', N'''-dimethylcarbothioamide)benzamidineto-kN,k2S and Hdamp: 2-(N,N-dimethylaminomethyl)-phenyl-C1), and their affinities to possible biological targets were investigated. Three different tumor cell lines were used to perform the cytotoxicity assays, including one cisplatin-resistant model, and the results showed lower EC50 for 1 over 2 in every case: B16F10 (4.1 µM and 15.6 µM), A431 (4.0 µM and >50 µM) and OVCAR3 (4.2 µM and 24.5 µM). However, a lower toxicity to fibroblast 3T3 cell line was observed for 2 (30.58 µM) when compared to 1 (7.17 µM), resulting in comparable therapeutic indexes. Both complexes presented strong affinity to HSA: they distorted the secondary structure of the protein, as verified by circular dichroism, but 1 additionally presented the apparent fluorescence quenching constant (Kapp) ten times greater than 2, which was probably due to the fact of 1 being able to denature HSA. The ethidium bromide displacement assay showed that neither 1 nor 2 are strong DNA intercalators, which is in agreement with what was observed through the UV-vis titration. In both cases, the 260 nm band presented hyperchromism, which can indicate ionic interactions or DNA damage. In fact, 1 was able to damage the pGEM plasmid, similarly to cisplatin, as verified by agarose gel electrophoresis and Atomic Force Microscopy. Biophysical studies in cancer cells model membranes were also performed in order to investigate the interaction of the gold complexes to lipid bilayers and revealed that the compounds interact with the membranes by exhibiting partition coefficients of 103 order of magnitude. Overall, both complexes were found to be promising candidates for the development of a future anticancer drug against low sensitive or cisplatin resistant tumors.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Ovarian Neoplasms , Antineoplastic Agents/pharmacology , Apoptosis , Cell Line, Tumor , Coordination Complexes/pharmacology , Female , Gold , Humans , Ligands
11.
Article in English | MEDLINE | ID: mdl-35284878

ABSTRACT

Chagas disease is a tropical disease caused by the protozoan parasite Trypanosoma cruzi and currently affects millions of people worldwide. Curcumin (CUR), the major constituent of turmeric spice (dry powder of Curcuma longa L. plant rhizomes and roots), exhibits antiparasitic activity against protozoan parasites in vitro. However, because of its chemical instability, poor cellular uptake and limited bioavailability it is not suitable for clinical use. The objective of this study was to synthesize and evaluate in vitro CUR monoketone analog dibenzalacetone (DBA 1) and its non-phenolic, methoxy (2-4) and chloro (5) derivatives for better stability and bioavailability against T. cruzi. Diveratralacetone, the tetramethoxy DBA (DBA 3), was found to be the CUR analog with most enhanced activity against the amastigote forms of four strains of T. cruzi tested (Brazil, CA-I/72, Sylvio X10/4 and Sylvio X10/7) with 50% inhibitory concentration (IC50) < 10 µM (1.51-9.63 µM) and selectivity index (SI) > 10 (C2C12 non-infected mammalian cells). This was supplemented by time-course assessment of its anti-T. cruzi activity. DBA 1 and its dimethoxy (DBA 2) and hexamethoxy (DBA 4) derivatives were substantially less active. The inactivity of dichloro-DBA (DBA 5) was indicative of the important role played by oxygenated groups such as methoxy in the terminal aromatic rings in the DBA molecule, particularly at para position to form reactive oxygen species essential for anti-T. cruzi activity. Although the DBAs and CUR were toxic to infected mammalian cells in vitro, in a mouse model, both DBA 3 and CUR did not exhibit acute toxicity or mortality. These results justify further optimization and in vivo anti-T. cruzi activity evaluation of the inexpensive diveratralacetone for its potential use in treating Chagas disease, a neglected parasitic disease in economically challenged tropical countries.

12.
Can J Physiol Pharmacol ; 99(8): 795-802, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33296274

ABSTRACT

Cardiac damage during the acute phase of Chagas disease (CD) is associated with an increase in pro-inflammatory markers and oxidative stress. Melatonin (MEL) has emerged as a promising therapy for CD due to its antioxidant and immunomodulatory properties; however, the protective action of MEL in the cardiac tissue, as well as its direct action on the parasite cycle, is not fully understood. We investigated the effects of MEL on heart parasitism in mice infected with Trypanosoma cruzi and also its effects on the parasitic proliferation in vitro. Our in vivo study showed that MEL reduced circulating parasitemia load, but did not control tissue (heart, liver, and spleen) parasitism in mice. MEL did not prevent the redox imbalance in the left ventricle of infected mice. Our in vitro findings showed that MEL did not inhibit parasites replication within cells, but rather increased their release from cells. MEL did not control parasitism load in the heart or prevent the cardiac redox imbalance induced by acute T. cruzi infection. The hormone controlled the circulating parasitic load, but within cells MEL accelerated parasitic release, a response that can be harmful.


Subject(s)
Melatonin , Trypanosoma cruzi , Animals , Chagas Disease , Heart , Mice
13.
Bioorg Med Chem ; 29: 115855, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33199200

ABSTRACT

Despite the serious public health problems caused by Chagas disease in several countries, the available therapy remains with only two drugs that are poorly active during the chronic phase of the disease in addition to having severe side effects. In search of new trypanocidal agents, herein we describe the synthesis and biological evaluation of eleven new 1,6-diphenyl-1H-pyrazolo[3,4-b]pyridine compounds containing the carbohydrazide or the 2,3-dihydro-1,3,4-oxadiazole moieties. Two of them showed promising in vitro activity against amastigote forms of T. cruzi and were evaluated in vivo in male BALB/c mice infected with T. cruzi Y strain. Our results suggest that the substitution at the C-2 position of the phenyl group connected to the carbohydrazide or to the 2,3-dihydro-1,3,4-oxadiazole moieties plays an important role in the trypanocidal activity of this class of compounds. Moreover, the compound containing the 2,3-dihydro-1,3,4-oxadiazole moiety has demonstrated more favorable structural requirements for in vivo activity than its carbohydrazide analog.


Subject(s)
Chagas Disease/drug therapy , Pyrazoles/pharmacology , Pyridines/pharmacology , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Animals , Cell Line , Cell Survival/drug effects , Chagas Disease/pathology , Dose-Response Relationship, Drug , Male , Mice , Mice, Inbred BALB C , Molecular Structure , Parasitic Sensitivity Tests , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Pyridines/chemical synthesis , Pyridines/chemistry , Structure-Activity Relationship , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/chemistry
14.
Exp Parasitol ; 219: 108032, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33137308

ABSTRACT

Chagas disease affects several countries around the world with health and sanitation problems. Cysteine proteases are essential for the virulence and replication of the Trypanosoma cruzi, being modulated by dipeptidyl nitriles and derivatives. Here, four dipeptidyl nitrile derivatives were assayed in three T. cruzi morphologies and two strains (Tulahuen and Y) using a set of assays: (i) analysis of the inhibitory activity against cysteine proteases; (ii) determination of the cytotoxic activity and selectivity index; (iii) verification of the inhibition of the trypomastigote invasion in the host cell. These compounds could inhibit the activity of cysteine proteases using the selective substrate Z-FR-MCA for the trypomastigote lysate and extracellular amastigotes. Interestingly, these compounds did not present relevant enzymatic inhibition for the epimastigote lysate. Most of the substances were also cytotoxic and selective against the trypomastigotes and intracellular amastigotes. The best compound of the series (Neq0662) could reduce the enzymatic activity of the cysteine proteases for the trypomastigotes and amastigotes. It was equipotent to the benznidazole drug in the cytotoxic studies using these two parasite forms. Neq0662 was also selective for the parasite, and it inhibited the invasion of the mammalian host cell in all conditions tested at 10 µM. The stereochemistry of the trifluoromethyl group was an important factor for the bioactivity when the two diastereomers (Neq0662 and Neq0663) were compared. All-in-all, these results indicate that these compounds could move further in the drug development stage because of its promising bioactive profile.


Subject(s)
Cysteine Proteinase Inhibitors/pharmacology , Nitriles/pharmacology , Trypanosoma cruzi/drug effects , Analysis of Variance , Animals , Antiparasitic Agents/chemistry , Antiparasitic Agents/pharmacology , Area Under Curve , Cell Line , Cell Survival , Cysteine Proteinase Inhibitors/chemistry , Cysteine Proteinase Inhibitors/toxicity , Haplorhini , Kidney/cytology , Nitriles/chemistry , Proteolysis , Stereoisomerism , Tetrazolium Salts , Thiazoles , Trypanosoma cruzi/enzymology , Trypanosoma cruzi/growth & development , Trypanosoma cruzi/metabolism
15.
Chem Biol Drug Des ; 96(3): 948-960, 2020 09.
Article in English | MEDLINE | ID: mdl-33058457

ABSTRACT

Cruzain is an established target for the identification of novel trypanocidal agents, but how good are in vitro/in vivo correlations? This work describes the development of a random forests model for the prediction of the bioavailability of cruzain inhibitors that are Trypanosoma cruzi killers. Some common properties that characterize drug-likeness are poorly represented in many established cruzain inhibitors. This correlates with the evidence that many high-affinity cruzain inhibitors are not trypanocidal agents against T. cruzi. On the other hand, T. cruzi killers that present typical drug-like characteristics are likely to show better trypanocidal action than those without such features. The random forests model was not outperformed by other machine learning methods (such as artificial neural networks and support vector machines), and it was validated with the synthesis of two new trypanocidal agents. Specifically, we report a new lead compound, Neq0565, which was tested on T. cruzi Tulahuen (ß-galactosidase) with a pEC50 of 4.9. It is inactive in the host cell line showing a selectivity index (SI = EC50cyto /EC50T. cruzi ) higher than 50.


Subject(s)
Chagas Disease/drug therapy , Drug Design , Protozoan Proteins/antagonists & inhibitors , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Animals , Crystallography, X-Ray , Cysteine Endopeptidases , Structure-Activity Relationship , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/chemistry , Trypanocidal Agents/therapeutic use
16.
Dalton Trans ; 49(45): 16440-16452, 2020 Nov 25.
Article in English | MEDLINE | ID: mdl-32776028

ABSTRACT

Trinuclear ruthenium complexes with orthometalated phenazines of general formula [Ru3(µ3-O)(µ2-OAc)5(L)(py)2]PF6 (L = dppn, benzo[i]dipyrido[3,2-a:2',3'-c]phenazine, 1; dppz, dipyrido[3,2-a:2',3'-c]phenazine, 2; CH3-dppz, 7-methyldipyrido[3,2-a:2',3'-c]phenazine, 3; Cl-dppz, 7-chlorodipyrido[3,2-a:2',3'-c]phenazine, 4) were investigated for their cytotoxic activity toward the B16F10 murine melanoma and the L929 non-cancer cell lines and against Trypanosoma cruzi (2-4). This study also reports a multi-technique investigation into how complexes 1-4 interact with DNA and human serum albumin, HSA. At concentrations ranging from 2 to 50 µM, all the complexes reduced B16F10 murine melanoma cell viability by over 50%. Complex 4 had the highest cytotoxic effect in the series, diminishing B16F10 cell viability to 38% at 2 µM, with an overall order for anticancer activity of 4 > 2 > 3 > 1. Complexes 2-4 showed remarkable activity in inhibiting epimastigote and amastigote forms of T. cruzi. Complex 2 showed better antitrypanosomal activity than the reference drug (IC50 = 1.19 µM and IC50 = 0.25 µM for epimastigote and amastigotes forms, respectivily). Ethidium bromide (EB) displacement assays showed that DNA intercalation progressively increases with the extension of the π-conjugation of the cyclometalating ligand and the presence of substituents in the phenazinic portion (1 > 4-3 > 2), showing that complex 1 is a stronger intercalator than EB itself (Kapp > 107 M-1). Viscosity measurements followed the same trend. Cytotoxicity against cancer cells and antitrypanosomal activity follow the same order, which is different to the tendency of DNA intercalation, suggesting DNA is not the main target of these complexes. Compound 1-4 showed very high affinity with HSA (Kb ∼109 M-1). Circular dichroism results also showed that the complexes alter significantly the secondary structure of the HSA, lowering the α-helix % from 86.2 (pure protein) to less than 5% for compounds 1, 2 and 4 at 2.8 µM. These findings demonstrated the important role of phenazines for the biological activity of triruthenium compounds.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Phenazines/chemistry , Trypanosoma/drug effects , Antiprotozoal Agents/chemistry , Antiprotozoal Agents/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Humans , Ligands
17.
ChemMedChem ; 15(21): 2019-2028, 2020 11 04.
Article in English | MEDLINE | ID: mdl-32729242

ABSTRACT

Chagas disease affects 6-8 million people worldwide, remaining a public health concern. Toxicity, several adverse effects and inefficiency in the chronic stage of the disease are the major challenges regarding the available treatment protocols. This work involved the synthesis of twenty-two 1,4-disubstituted-1,2,3-triazole analogues of benznidazole (BZN), by using a click chemistry strategy. Analogues were obtained in moderate to good yields (40-97 %). Antitrypanosomal activity was evaluated against the amastigote forms of Trypanosoma cruzi. Compound 8 a (4-(2-nitro-1H-imidazol-1-yl)methyl)-1-phenyl-1H-1,2,3-triazole) without substituents on phenyl ring showed similar biological activity to BZN (IC50 =3.0 µM, SI>65.3), with an IC50 =3.1 µM and SI>64.5. Compound 8 o (3,4-di-OCH3 -Ph) with IC50 = 0.65 µM was five-fold more active than BZN, and showed an excellent selectivity index (SI>307.7). Compound 8 v (3-NO2 , 4-CH3 -Ph) with IC50 =1.2 µM and relevant SI>166.7, also exhibited higher activity than BZN. SAR analysis exhibited a pattern regarding antitrypanosomal activity relative to BZN, in compounds with electron-withdrawing groups (Hammett σ+) at position 3, and electron-donating groups (Hammett σ-) at position 4, as observed in 8 o and 8 v. Further research might explore in vivo antitrypanosomal activity of promising analogues 8 a, 8 o, and 8 v. Overall, this study indicates that approaches such as the bioisosteric replacement of amide group by 1,2,3-triazole ring, the use of click chemistry as a synthesis strategy, and design tools like Craig-plot and Topliss tree are promising alternatives to drug discovery.


Subject(s)
Nitroimidazoles/pharmacology , Triazoles/pharmacology , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Animals , Cells, Cultured , Macaca mulatta , Molecular Structure , Nitroimidazoles/chemistry , Parasitic Sensitivity Tests , Triazoles/chemical synthesis , Triazoles/chemistry , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/chemistry
18.
PLoS Negl Trop Dis ; 14(3): e0007755, 2020 03.
Article in English | MEDLINE | ID: mdl-32163418

ABSTRACT

The cysteine protease cruzipain is considered to be a validated target for therapeutic intervention in the treatment of Chagas disease. A series of 26 new compounds were designed, synthesized, and tested against the recombinant cruzain (Cz) to map its S1/S1´ subsites. The same series was evaluated on a panel of four human cysteine proteases (CatB, CatK, CatL, CatS) and Leishmania mexicana CPB, which is a potential target for the treatment of cutaneous leishmaniasis. The synthesized compounds are dipeptidyl nitriles designed based on the most promising combinations of different moieties in P1 (ten), P2 (six), and P3 (four different building blocks). Eight compounds exhibited a Ki smaller than 20.0 nM for Cz, whereas three compounds met these criteria for LmCPB. Three inhibitors had an EC50 value of ca. 4.0 µM, thus being equipotent to benznidazole according to the antitrypanosomal effects. Our mapping approach and the respective structure-activity relationships provide insights into the specific ligand-target interactions for therapeutically relevant cysteine proteases.


Subject(s)
Cysteine Proteinase Inhibitors/pharmacology , Dipeptides/pharmacology , Leishmania mexicana/enzymology , Nitriles/pharmacology , Protozoan Proteins/antagonists & inhibitors , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/enzymology , Cysteine Endopeptidases , Cysteine Proteases/metabolism , Humans
19.
RSC Med Chem ; 11(11): 1275-1284, 2020 Nov 18.
Article in English | MEDLINE | ID: mdl-34095840

ABSTRACT

The cysteine protease cruzipain is considered to be a validated target for therapeutic intervention in the treatment of Chagas disease. Hence, peptidomimetic cruzipain inhibitors having a reactive group (known as warhead) are subject to continuous studies to discover novel antichagasic compounds. Here, we evaluated how different warheads for a set of structurally similar related compounds could inhibit the activity of cruzipain and, ultimately, their trypanocidal effect. We first investigated in silico the intrinsic reactivity of these compounds by applying the Fukui index to correlate it with the enzymatic affinity. Then, we evaluated their potency against T. cruzi (Y and Tulahuen strains), which revealed the reversible cruzain inhibitor Neq0656 as a better trypanocidal agent (ECY.strain 50 = 0.1 µM; SI = 58.4) than the current drug benznidazole (ECY.strain 50 = 5.1 µM; SI > 19.6). We also measured the half-life time by HPLC analysis of three lead compounds in the presence of glutathione and cysteine to experimentally assess their intrinsic reactivity. Results clearly illustrated the reactivity trend for the warheads (azanitrile > aldehyde > nitrile), where the aldehyde displayed an intermediate intrinsic reactivity. Therefore, the aldehyde bearing peptidomimetic compounds should be subject for in-depth evaluation in the drug discovery process.

20.
ACS Infect Dis ; 5(10): 1698-1707, 2019 10 11.
Article in English | MEDLINE | ID: mdl-31419384

ABSTRACT

Chagas disease remains a serious public health concern with unsatisfactory treatment outcomes due to strain-specific drug resistance and various side effects. To identify new therapeutic drugs against Trypanosoma cruzi, we evaluated both the in vitro and in vivo activity of the organometallic gold(III) complex [Au(III)(Hdamp)(L14)]Cl (L1 = SNS-donating thiosemicarbazone), henceforth denoted 4-Cl. Our results demonstrated that 4-Cl was more effective than benznidazole (Bz) in eliminating both the extracellular trypomastigote and intracellular amastigote forms of the parasite without cytotoxic effects on mammalian cells. In in vivo assays, 4-Cl in PBS solution loses the protonation and becomes the 4-neutral. 4-Neutral reduced parasitaemia and tissue parasitism in addition to protecting the liver and heart from tissue damage at 2.8 mg/kg/day. All these changes resulted in the survival of 100% of the mice treated with the gold complex during the acute phase. Analyzing the surviving animals of the acute infection, the parasite load after 150 days of infection was equivalent to those treated with the standard dose of Bz without demonstrating the hepatotoxicity of the latter. In addition, we identified a modulation of interferon gamma (IFN-γ) levels that may be targeting the disease's positive outcome. To the best of our knowledge, this is the first gold organometallic study that shows promise in an in vivo experimental model against Chagas disease.


Subject(s)
Chagas Disease/drug therapy , Gold/chemistry , Thiosemicarbazones/chemistry , Thiosemicarbazones/pharmacology , Trypanocidal Agents/chemistry , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Animals , Cell Line , Chagas Disease/pathology , Cysteine Endopeptidases , Disease Models, Animal , Drug Resistance/drug effects , Female , Heart , Humans , Interferon-gamma/metabolism , Liver/pathology , Mice , Mice, Inbred BALB C , Molecular Docking Simulation , Muscle, Skeletal/parasitology , Muscle, Skeletal/pathology , Nitroimidazoles , Organometallic Compounds/chemistry , Organometallic Compounds/pharmacology , Parasitemia , Protozoan Proteins , Survival Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...